
Theory of radiation reaction and atom self-energies: all-order perturbation theory of the

generalized non-relativistic Lamb shift

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1974 J. Phys. A: Math. Nucl. Gen. 7 1647

(http://iopscience.iop.org/0301-0015/7/13/019)

Download details:

IP Address: 171.66.16.87

The article was downloaded on 02/06/2010 at 04:52

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0301-0015/7/13
http://iopscience.iop.org/0301-0015
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A :  Math., Nucl. Gen., Vol. 7, No. 13, 1974. Printed in Great Britain. 0 1974 

Theory of radiation reaction and atom self-energies : 
all-order perturbation theory of the generalized 
non-relativistic Lamb shift 

R K Bullough, P J Caudrey and A S F Obadai 
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Abstract. We describe a natural all-order decorrelation procedure for the interaction of a 
single two-level atom with all modes of the radiation field which replaces the semi-classical 
boson approximation for the atom by an exact fermion treatment. In consequence the 
vacuum Lamb shift appears as twice the Bethe shift for each level separately instead of the 
limiting neo-classical shift obtained in the Bose theory. 

Stimulated emission and absorption modify the Einstein A coefficient and the vacuum 
shift is extended to include a field dependent shift. Mass renormalization terms apparently 
particular to the two-level atom, one field dependent the other not, also arise; but the kinetic 
mass renormalization which appears in the boson theory is identically eliminated. The all- 
order decorrelated perturbation theory yields an equation of motion for the single-atom 
dipole moment which includes those reported from operator radiation reaction theory 
recently; but it also generalizes these by including the effects of stimulated processes. 

The method is extended to a many-atom case in which it becomes necessary to modify 
the procedure slightly. The theory gives exponential decay of the dipole density waves 
travelling through an attenuator and the decay constant is modified by stimulated terms 
proportional to the field intensity. There is corresponding exponential growth in the 
amplifier. 

1. Introduction 

The quantum electrodynamics of spontaneous emission is well understood in both non- 
relativistic and relativistic formulations of perturbation theory (cf, eg, Power 1964, Kroll 
1965 as well as Low 1952 for the relativistic problem). Further, Weisskopf and Wigner 
(1930) long since gave us a dynamical theory of spontaneous emission using Dirac’s 
method of ‘variation of constants’ for the Schrodinger wavefunction. Nevertheless it is 
natural to wish to provide a dynamical theory of spontaneous emission which exhibits 
the radiation damping mechanism as a radiation reaction of the type first considered (in a 
c number theory) by Lorentz (1909)$. Moreover in modern quantum optics it has become 
desirable to be able to treat the intense field optics of a many-atom system systematically 
without ad hoc inclusion of damping and radiative level shifting processes which may in 
any case apply only to single atoms coupled to weak or vanishing fields. 

t Present address : Department of Mathematics, Faculty of Science, AI-Azhr University, Nasr City, Cairo, 
UAR. 
$See especially the 1952 edition of this book (New York : Dover) # 27,28, 37 and 38, and note 18. 
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In this series of papers we therefore develop a theory of operator reaction fields 
which is applicable to systems of one or more atoms each with two or more energy levels : 
the theory covers the problems of spontaneous emission, stimulated emission and 
absorption, and radiative level shifts due both to the vacuum (the Lamb shift) and to 
imposed fields. It is interesting to note that the recent optical resolution of hyperfine 
structure in sodium (Hansch et a1 1971) and similar work (eg Schallow 1973) makes a 
one-atom theory of radiative level shifts with this degree of generality very desirable at 
this time. The N atom theory also includes the theory of super-radiance, due in the first 
instance to Dicke (1954) in a natural way as a radiation reaction field theory. 

Recently Jaynes and co-workers (Jaynes and Cummings 1963, Crisp and Jaynes 
1969, Stroud and Jaynes 1970, Jaynes 1973) have studied a ‘neo-classical’ theory of 
spontaneous emission and level shifts which is essentially non-linear and agrees with 
Bethe’s perturbation theory of the Lamb shift only to order of magnitude and then 
only in the long-time limit. A number of workers (for example Bullough et a1 1972, 
Bullough 1973, Ackerhalt et a1 1973) have already reported, however, that the neo- 
classical theory is equivalent to a non-linear operator reaction field theory in which 
operator products are systematically decorrelated. They also show in more or less 
degree that if the non-linear operator theory is not decorrelated the results do agree with 
Bethe’s for the shifts? and Weisskopfs and Wigner’s for the dynamical evolution of the 
radiation rate. Operator reaction field theory as such, however, is still only briefly re- 
ported and it is the aim of this series of papers to present a comprehensive theory of this 
type in a completeness greater than was possible in earlier reports. 

The theory is both approximate and to an extent internally inconsistent (Bullough 
1973, Bullough et a1 1973). The inconsistencies arise only if the number of field modes 
is unbounded but reaction field theory is rather sensitive to exposing these. One ap- 
proximation is to make the usual rejection of certain terms as ‘mass renormalization’ 
terms. These are actually identical in form with those arising at order e2 in perturbation 
theory and show that although the theory is dynamical (that is valid for all time) it is still 
an order e’ theory. This is a consequence of a second approximation apparently re- 
quired to simplify the effect of the reaction field : perhaps the most challenging problem 
remaining in reaction field theory is to find an exact solution of even the simplest problem 
of a single atom coupled to the vacuum field. 

These facts mean that a check on the dynamical theory is needed and one has already 
been briefly reported (Bullough and Caudrey 1971). Since the report is brief and has 
apparently been misunderstood (compare Ackerhalt et a1 1973 and our comments in 
Bullough et a1 1973) we shall preface this series of papers on reaction field theory with a 
paper which gives complete account of this somewhat different approach to the problem 
of a coupled matter field system. It is an all-order perturbation theory which yields as 
its main result the equations of motion (4.12) for the dipole moment of a single two-level 
atom valid precisely to order e2 .  These equations contain field-dependent effects and 
have all the generality previously described. We regain directly comparable results 
specifically by operator reaction field methods in later papers; and there we are also able 
to draw correspondence with the technique of master equations developed especially by 
Agarwal (1970, 1971a, 1971b, 1973a, 1973b). This correspandence is one of complete 
equivalence and serves as a further check on both the reaction field and perturbation 
theories. 

In this paper we consider the problem of a collection of two-level atoms in an electro- 
magnetic field. This field is divided into two parts. The first of these is quantized and is 
t For this see also Agarwal(1973a). 
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specified as an initial condition on the density matrix at t = -cc by an initial Foch 
state vector with non-vanishing occupation numbers in one or more field modes. The 
second part is a ‘probe’ field which is assumed to be classical and of low intensity. The 
mode of calculation is to find a linear response relation for the atomic system in the 
quantized field induced by the semi-classical field. Later in this series we show how the 
totally quantized reaction field theory reproduces both the non-linear features due to the 
quantized field in the present calculation as well as the features due to the ‘external’ 
semi-classical probe. 

The Q 2 which follows describes the system of fields and atoms in detail as well as 
some of the work on linear response theory which has already been done on it. In Q 3 we 
describe a new decorrelation procedure for one atom in which the field is decorrelated 
and not the atomic system as in earlier work. The Q 4 gives an example of how the method 
works for a specific distribution of occupation numbers for the quantized field and 
shows that the field not only produces stimulated emission but also modifies the Lamb 
shift. In this section we derive the main result (4.12) of the paper. 

In $ 5  the method of all-order perturbation theory is generalized to a many-atom 
system. It becomes necessary to decorrelate the atomic system as well as the field in this 
case and the outcome is the same as if the one-atom case could simply be used to provide 
a formula for the atomic polarizability in an otherwise totally classical theory. Finally 
Q 6 is a discussion of the results. It also assesses the advantages and disadvantages of the 
particular form of all-order perturbation theory from which these results have been 
obtained. 

2. Description of system and earlier work 

Our system consists of N atoms situated at the points xi ( i  = 1,2,. . . , N )  in an electro- 
magnetic field. We define a dipole density operator 

Ax, t )  = e 1 6(x - xi)ri(t) 
i 

where eri(t) is the dipole operator for the ith atom. All operators are conveniently taken 
in the interaction representation. In the dipole approximation we can take the interac- 
tion as the interaction density 

Hint(x, t )  = -14x7 t )  (eb,  t )  + Eext(xI t ) )  (2.2) 

where e(x, t )  is a field operator and EeXt(x, t )  is the classical externally applied field. 
The total hamiltonian is 

(2.3) 

The summation over x on Hint(x, t )  is to be interpreted as an integration. The modes of 
the field are labelled by wavevector k and polarization index d (A = 1 or 2). The first 
term in the hamiltonian (2.3) is therefore the usual free-field hamiltonian. Since E 
is a classical field the hamiltonian associated with this is immaterial to the problem. 
The hamiltonian Hmattcr is the hamiltonian of the free matter. For the moment it is 
sufficient to know that Hmatter has eigenstates which are product states of the eigenstates 
Isi) of the hamiltonians for each one of the free atoms i. 
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The field operator e(x, t )  is a total field operator which at x i  implicitly includes the 
fields from all other atoms j # i. It is not necessarily simply the transverse part of the 
field. Power and Zienau (1959) show that in the dipole approximation, with E,,, 0,  
e can be the transverse part of the field providing certain contact terms are included in the 
hamiitonian. We look carefully at these contact terms later in this series but ignore them 
here. 

From the hamiltonian (2.3) it is possible to derive the classical integral equation 

P(x ,  w) = 1 6(x -x i )a i (w)  . F(x,  x’ ; w) . f i x ’ ,  w) dx‘ 
i 

(2.4) 

The argument has been sketched (Bullough et al 1968, Obada and Bullough 1969) but 
has not yet been published at length. However it is sufficient for our purpose here to 
note the following: f i x ,  w) is an expectation value which can now be interpreted as 
the classical dipole density; it has been Fourier transformed on the time t so that it is 
now a function of frequency w. The tensor ai(w) is the Kramers-Heisenberg polariza- 
bility tensor for the ith atom : 

in which the frequencies os, E h -  ‘(E,, - E,,) and ESi and Eo, are the excited and ground 
state energies of the free ith atom; 6 is a positive infinitesimal. 

The tensor F(x,  x ‘  ; w) is the classical propagator for dipole fields : 

F ( x , x ‘ ;  w) E (VV+k~U)exp(ik,lx-x’l)lx-x’l-’ (2.7) 

in which k ,  wc- ’ and U is the unit tensor. The result (2.4) is an approximate result in 
which an all-order perturbation theory is systematically decorrelated at each order. 
The propagator (2.7) is an exact consequence of this decorrelation procedure. 

The procedure is to expand the density matrix as a series of nested commutators. 
The expanded density matrix is used to calculate the expectation value P(x,  t )  of the 
dipole density operator p(x, t ) .  Because of the parity of the dipole operator the series 
is a series in e’ although Hi,,, is linear in e .  The decorrelation replaces a term like 

[[ri(t) ,  r i ( t ’ ) .  4 x i ,  t’)], rj(t“) . e ( x j ,  t”)] 

by 

(2.8a) 

(0,l [ri(t), ri(t’)] 10,) [&i 7 t‘X e(x j ,  t”)] rj(t”) (2.8b) 

a pattern which can be continued throughout the commutator nest. The state IO,) 
is the ground state of atom i: in the interaction representation [ri(t), r j t ’ ) ]  = 0 for i # j .  It 
will be noted that since EeXt(x,  t )  commutes with all operators it will survive from the 
interaction (2.2) only in the last term of the commutator nest. The result is therefore 
linear in E,,,(x, t )  but this is precisely the result we need for a linear response theory. 

The propagator F emerges from (2.8b) because of the result of Jordan and Pauli (1928) 
that the unequal space-time commutator of two free-field operators is a c number. The 
theory sketched here is a causal theory and the Fourier transform of the causal part of 
this commutator is precisely F(x ,  x ’ ;  w) : 

- [e(x,  t ) ,  e(x’, t’)]O(t-  t ’ )  eiW(‘-”) dt‘ = F(x 7 , .  X’  . w) J-, (2.9) 
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In this e(t) is the step function. Note that the field operator e(x, t )  in (2.2) becomes a free- 
field operator in the interaction representation : it is the 6(t - t') which plays a vital role in 
picking up longitudinal contributions to the field (a point we must discuss in detail 
elsewhere). To ensure convergence at the lower limit t' = - 00 we interpret w as w+i6 
in (2.9). 

The Fourier transform of the causal part of the decorrelated single-atom dipole- 
dipole commutator is the Kramers-Heisenberg polarizability for that atom : 

" i  
-(Oil [eri(& eri(t')]IOi)O(t-t') e""-"'dt' = ai(m). (2.10) 

We shall suppose the states so chosen that rios = (Oilrilsi) is the same as risO. Com- 
parison of (2.10) with (2.9) suggests that the decorrelation procedure adopted is equiva- 
lent to assuming that the dipole operators ri(t) are Bose-type operators. The Bose 
approximation is thought to be good for few photons amongst many atoms few of which 
are in an excited state (compare, eg, Hopfield 1958). 

We see this approximation is a Bose approximation very precisely by restricting the 
discussion to a single spinless two-level atom with ground state 10) and excited state 
Is) chosen so that the matrix elements of the dipole operator are given by 

(2.1 la) erOs = ersO = exOsP 

where P is a fixed unit vector. Then at time t = 0 we can put 

er = exosPa,. = exoslj(a+ +a-) (2.11b) 
where 

a* = go,.+ia,) (2.114 

and a,., a," (and a,) are the Pauli spin matrices. The atomic hamiltonian Hmatter is now 
given by 

(2.12) !?Imatter = +hW,U, = H , .  

In the interaction representation at time t we find 

a&) = exp(ih-'H,t)o,. exp( -ih-'Hot) = exp(iw,t)a+ +exp( -iw,t)o-, 

and the commutator becomes 

(2.13) 

[er@), e@)] = -e2x&Pi2i sin w,(t-t ')[a-, a+]. (2.14) 

Thus the decorrelation procedure used by Bullough et a1 amounts to assuming a boson 
commutation relation for the operators U * ,  

[a-, a+] = 1.  (2.15) 

In fact, of course, they obey fermion commutation relations? 

[o-,a+] = -az 

[a-,o+]+ = 1.  
(2.16) 

t A single two-level atom evolves in a Hilbert space spanned by the states Is) and IO). Any linear operator on 
this space has a 2 x 2 matrix representation. A complete basis set of operators can be chosen to satisfy an SU, 
Lie algebra. Hence (2.15). 
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The classical integral equation (2.4) with the Kramers-Heisenberg polarizability now 
given by 

2e2w,x,3iri 
a(o) = 

h[w,2 - (w + (2.17) 

follows from (2.15) and not (2.16). In future we call this approximate theory the pseudo- 
boson theory. 

For a single particle at xi (2.4) in the pseudo-boson theory reduces to 

P~(w)S(X -xi) = ~r(~)riri  . S(X - xi)(EeXt(x, U )  + J ~ ( w )  Pi(w)) (2.18) 

where we have put 

fix, 0) = Pi(O)S(X -xi) 

a(o) = Cr(0)riri 

and 

J ~ ( o )  E F(x ,x’ ;u)~(x-x’ )~x’  = JO(w)U. s 
Thus 

Pi(W) = y ( 0 ) r i r i .  Ecxt(Xi, 0) 

where 

This solution is purely formal, however, as Jo(w) is divergent 

J,(o) = F(x, X’ ; o ) ~ ( x  - x’) dx’ s 
= I (VV + k i  U) exp(ik,lx - x’l)lx - x’l- 

1 
x oj exp( - ik. (x - x’)) dk dx’ 

k 2  dk+-ki 4 soE dk+#iki) U. =(-a: 371 

(2.19) 

(2.20) 

(2.21) 

We shall use the symbol 

in the later papers although we may restrict the upper limit to k,,, = c-’w,,, < CO. 
The cubic divergence in (2.21) is connected with the contact terms omitted from the 
hamiltonian (2.3) and we shall not analyse this term here : with this term ignored 

J,(w) = f ( k , k i K o  + iki) (2.22) 
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and 

e2h-  ' x i ,  
w, - w - ~ e 2 x ~ , h - ' ( k ~ K o  + ik;) 

'v 

near resonance. The width of this resonance is 

( 2 . 2 3 ~ )  

(2.236) 

(2.24) 

which is both the Einstein A coefficient and the Weisskopf and Wigner (1930) spontane- 
ous emission width. There is no stimulated emission in this theory. The Lamb shift in 
Bethe's form is also excluded and must be identified instead with the apparent shift of 
0, 

- i e 2 x & h - ' k ~ K o .  (2.25) 

This is the long-time limit of the dynamical shift obtained by Stroud and Jaynes (1970).  
The divergence of K O  is caused by the dipole approximation. If we use a modified 

version of the dipole approximation given by the substitution 

eri(t)6(x - x i )  + - e 1 exp - ik. (x -xi) (r i ( t )  exp ik . ri ( t ) )  dk (2 .26)  
(2.S 

(this has the effect of moving the site of the dipole from that of the centre of the atom to 
that of the electron in the atom which is responsible for the dipole) then the theory coin- 
cides with the long-time limit of the neo-classical Lamb shift theory of Crisp and Jaynes 
( 1  969).  

It is helpful to interpret the linear response relation (2 .19)  

Pi (w)  = ~(0)fifi Eext(xi, a) 

with y(w) given by (2.23a) in the time domain. For simplicity we suppose EeXt(x i ,  w)  is 
parallel to 8. Then 

[wf - w 2  - ~ e 2 x ~ , w , A - ' ( k , k ~ K o + i k ~ ) ] P ( o )  = 2 e 2 h - ' x ~ , o , E e x I ( x i ,  o) (2.27) 

and by Fourier inversion on w and writing E(t) for E e X t ( x i ,  t )  we get 

P ( t ) + o f P ( t ) - ~ o w ; 2 ( P ( t ) - K o w , ~ ( t ) )  = 2e2h-'x&w,E(t) .  (2 .28)  

This form emphasizes the connection of the pseudo-boson theory with Jaynes' work. 
We shall see later in this series that (2.28) is equivalent to assuming the Bose commutation 
relations (2.15) for the atom and using an operator reaction field 

2 f i . . .  2 K 0  
- T p ( t ) - -  -w,i@(t). 
3 c  3 c3 

This form of field really follows directly from the form of (2.21).  

3. A different decorrelation procedure 

(2.29) 

The lack of stimulated emission in the pseudo-boson theory is due to the decorrelation 
approximation used. This ensures that the field operators appear only in the form of c 
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number commutators which do not depend on the field states. In order to overcome this 
difficulty we shall change the decorrelation procedure so as to retain the fermion charac- 
ter of the commutation relations for the matter operators, (2.13). Unfortunately the 
calculation becomes intractable with no decorrelation so we decorrelate the field 
operators by replacing the anti-commutator of two such operators by its expectation 
value : 

(3 .1~)  [e(x, t ) ,  ek’,  0 1  + -, (phi t) ,  4x’ ,  0 1  + Iph) 

in which Iph) is the initial state of the field (at t = - 00). More precisely we replace 

[e(x, t )  + EeXt(x, 0, eb’, t’) + EeXt(x‘, t’)l+ (3.lb) 

at each stage where it may be identified, by the right-hand side of (3 .1~)  : once we agree to 
replace products of two fields by their expectation value this amounts to retaining only 
the linear terms in E(x, t )  which is all we need for any linear response theory. We shall see 
that the anti-commutator (3.lb) comes up in a natural way in the theory once we use the 
fermion commutation relations (2.13) for the atom. 

We use the same perturbation expansion as before, namely 

+ (i) :tl Sd.1 1: :t2 S d . 2  ~ r { p [ ~ x ,  t), H i n t ( x 1 ,  t 1 1 1 9  ~ i n t ( x 2  3 t2)1) 

+ . . .  (3.2) 

where p is the density operator of the system in the infinite past before the interaction is 
adiabatically ‘switched on’. This initial density operator is a product of the initial 
density operator po for the matter and the field density operator Iph) (phi. 

d .  ( 4 x i ,  t )+Eex t (x i ,  t ) ) .  The skeletons of the first few commutator 
nests in (3.2) are then 

We put e(t) 



Theory of radiation reaction and atom self-energies 1655 

transforming with respect to time to eliminate the convolution integrals we reach the 
result 

Pi(w) = - ( ~ s s -  ~ook4w)riri * (Ee A X i  9 0) + Jo+(w)a + (o)Eext(xi 9 0) 

+Jo+(o)a+(o)Jo+(w)a+(o)Ee,,(xi, w)+ . . .). 

Pi(0)  = y+(o)r i l i .  Eex,(Xi, w) 

(3.6) 

(3.7) 

This is equivalent to 

where 

We have taken the atomic density matrix po to be diagonal 

(3.9) 

a+(w) corresponds to a(w) with the expectation value of the commutator now replaced 
by the anti-commutator which is already a c number : 

eri(t’)]+8(t - t‘) e’”(‘-“) dt’ 

(3.10) 

This c number appears at the final step to (3.5) as noted. Notice the w in the numerator 
instead of the ws in the expectation value of the commutator (2.17). 

Similarly JO+(w) corresponds to Jo(w) but is now an expectation value : 

JO+(o) = F+(x,x’; w)b(x-~’)dx’ (3.11) i 
F+(x, x‘; o) 

= ;(phi [e(x, t), e(x‘, t’)]+Iph)8(t-t‘)eim(‘-‘”dt’ 

where n f ’  is the occupation number for photons of wavevector k and polarization 
zk,1(h = 1 or 2). 

In general unlike Jo(w), Jof(w) is not isotropic, ie JO+(o) # JO+(w)U. We have, 
however, defined the scalar 

JO+(W) = d .  JO+(w). ri. (3.13) 

We cannot easily express (3.7) with y+(w) given by (3.8) and JO+(o) given by (3.13) with 
(3.11) and (3.12) as an equation of motion because JO+(w) depends on w in a slightly 
complicated way. It simplifies considerably in typical cases and it is particularly simple 
in the case of an isotropic unpolarized field. 
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4. Equations of motion in an isotropic unpolarized field 

If the field is unpolarized nil) = np'. In our brief report (Bullough and Caudrey 1971) we 
chose nil) = ni2) = i n k  and for the isotropic field then chose n, = nk for all k. The factor 
of one half does not follow conventional usage and we shall not make this choice here. 
We choose instead nil) = ni2) = n, for all k. Then 

sin klx - x'( 
2ko dk (vv + k2 U)(2nk + 1)  ( , ) . (4.1) 

1 "  
F+(x,x'; o) = - 

K J, x - xi( 

In this isotropic field case JO+(o) is also isotropic and 

The imaginary part depends on nlkol : 

in which sgn k, is the sign of k, 
modes. If we choose the admittedly rather artificial distribution 

o c -  '. The real part, however, depends on all the field 

nk = n = constant for a e k < b (a < Jk,l < b) 

= o  otherwise 

then we get 

4 4 b2-k i  
Re JO+(o) = -ki  3K In ({;I,) - +&k, lok' kdk+-kon 3K [ k i  In [ k z  - - + b2  -u2 ]  (4.4) 

in which the first logarithmic term has been cut off at the reciprocal Compton wavelength 
k, = m,ch-'. The second term which would otherwise be quadratically divergent is 
also cut off there. It has to be interpreted as a mass renormalization in two-level atom 
theory. 

We now have 

near the physical resonance supposed close to o = +os. There is a resonance width 
which appears to be 

This is not just the usual width To corrected for stimulated emission and we were mistaken 
in saying this in our brief report (see Bullough and Caudrey 1971 below equation (13) 
noting that with the convention of )n instead of n (4.6) is just (nks+ l)ro). The width 
(4.6) includes the effect of stimulated absorption as well as emission. This must be so 
since y+(o) is a dynamical result which leads to an equation of motion as did y(w) in 4 2. 
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The shift in resonance frequency is given by 

Am, = - h-'e2x& Re J;(o,) 

--h-'e2x& 37T [ k:n In (~f I$)+k,n(b i -a2)  - 1 . (4.7) 

The first logarithmic term is precisely twice the non-relativistic Bethe (1947) formula for 
the Lamb shift. This is to be expected since both energy levels move towards one another 
by the amount given by the Bethe single-level shift. We use the symbol A for this first 
term. 

The second term would diverge quadratically without cut-off: it can be identified 
as precisely twice the static electromagnetic mass renormalization term which appears 
in second-order perturbation theory for the level shifts (Feynman and Hibbs 1965, 
Bullough 1969). It is worth noting that in level-shift perturbation theory for the many- 
level atom we obtain for each level 

after using the Thomas-Reiche-Kuhn sum rule for oscillator strengths. Each level is 
therefore shifted by the same amount and the spacing between any two levels is unaffected. 
On the other hand in the two-level atom the ground state contributes a single term pro- 
portional to 2h-'(E, - Eo)x& = 2m,x& and theexcited state contributes one proportional 
to 2h- ,(Eo -E,)x& so that the two terms simply add. 

It might appear from this that to the approximation which is (4.7) certainly an e2 
approximation the renormalization problem is solved. Unfortunately whilst the second 
term in (4.7) is a particular and apparently spurious feature of the two-level atom model 
so is the elimination of the linearly divergent term which appeared previously in (2.24). 
Although this term is the source of the Stroud and Jaynes (1970) shift it appears in Bethe's 
(1947) theory as the kinetic mass renormalization term (Feynman and Hibbs 1965). In 
the many-level atom the analogue of (4.8) is the level dependent result 

in which p is the momentum operator. In general the spacing between two levels depends 
on the two levels. However, in two-level atom theory two terms 2h-2(E,-EI)2~& will 
cancel. This is one explanation why no term in K O  = (27~)- 'k, dk appears in (4.7) 
and it reinforces the view that (4.7) is an e2 result equivalent to second-order perturbation 
theory. 

The other logarithmic term is a generalization of the Lamb shift to include the effect 
of occupied field modes : it has been called the 'lamp' shift ! It obviously vanishes for a 
symmetric distribution of field modes so that 

b2-kf = kf-a'. 

We use the symbol A, for this term. 
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The remaining term proportional to n(b2 - a 2 )  does not vanish even in this particular 
case. It obviously generalizes the term in Jp k dk for the vacuum. It will vanish for the 
many-level atom in second-order perturbation theory as pointed out by Knight (1972) 
again because of the result (4.8). The situation surrounding any field-dependent kinetic 
mass renormalization term proportional to (4.9) is different : in perturbation theory two 
stimulated terms mutually cancel as Knight (1972) and Saunders and Bullough (1973) 
show?. 

In our brief report (Bullough and Caudrey 1971) of this all-order perturbation theory 
for the two-level atom we suggested that the term in (4.7) proportional to n(b2 - a 2 )  
should be observable in sufficiently intense isotropic fields: but the argument from (4.5) 
to (4.7) shows that despite the all-order calculation the result (4.7) is actually an e' result. 
To this order our suggestion is therefore mistaken for the reason pointed out by Knight. 
We were concerned at that time to report consequences of the two-level atom theory. 
However we now know that identical results for the two-level atom can be obtained by 
reaction field theory and that an extension to the many-level atom can be made which 
reproduces all the results of second-order perturbation theory. The problem of extending 
the theory beyond order e2 has not been solved. 

A conceptual difficulty remains even at order e2 : if the term in Jp k dk in (4.7) is 
interpreted as a mass renormalization level by level then this becomes field dependent as 
JF (2n, + l)k dk in an isotropic field. The situation is different in relativistic theory 
where quadratically divergent terms cancel. We have not explored the present problem 
in this context. 

We now return to (3.7) and calculate the main result of this paper. This result is the 
equation of motion analogous to (2.27) but now based on y+(w) instead of y(w). 

We observe that because of the sgn ko in (4.3) we have as in (4.5) 

for w > 0. But for w < 0 

w,+w-h- 1 2 2  e xos( J +  o(w,)}*' 

(4.10a) 

(4.10b) 

We can now see the essential mathematical role played by the factor w rather than w, 
in the numerator of (3.10) : it preserves the sign of the energy shift as well as the causal 
property-both poles are in the lower half plane. 

To the same approximation as (4.10) we have for all w that 

1 2 2  
( P s s  - Poo)h- e xos y+(w) = - 

wf -w2 -2w,h- 'e2x& Re(JJ(wS))-2iwh- le2x& Im(J;(w,)) (4.1 1) 

t Stenholm( 1972. pp 1-122,§2.2) reviews the'lightshifts'obtainedine20rder perturbationtheoryfirst discussed 
by Barrat and Cohen-Tannoydji (1961, see also Series 1970). These shifts appear to us incorrect in at least two 
points : first, the calculation omits all negative-frequency contributions which means that the magnitude of the 
shifts can only be one half of our shifts based on (4.4); second there is no  distinction between the physical and 
non-physical parts of the shifts so that, and because of the omission of the negative frequency contributions, 
there is a field dependent kinetic mass apparently contributing to the shift. Further, the calculation does not 
make clear that the width takes the form (4.6) since for the single level considered it approximates to(nk7 + l)r, 
We shall show in a later paper that it is the width (4.6) which appears in the spectrum although we find in this 
case that nks must be evaluated at the vacuum shifted wavenumber k; = k, - c- 'A. 
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so that 

P(t)+w;P(t)+(2n+ l)r0P(t)-2ws A + A l  +A2+--h-1e2x~,ks~0kc 4 kdk)P(t) i 37c 

(4 .12~)  

It can be seen also that because (4.3) has the factor k% rather than k,3 we could replace the 
damping term by -(2n+ l)r,,w,-2&). This is equivalent to arguing from (4 .12~)  that 
P ( t )  N -o;P( t )  which will be true to O(row; I )  if the field occupation number n is small 
enough since E ( t )  is vanishingly weak. In fact because nlkol appears in (4.3) and the w 
in the numerator of (3.10) introduces a factor w4 into the damping term the time Fourier 
transform of this term is still more complicated. 

The same sort of thing is true of the shift, for in (4 .12~)  the terms A, A 1 ,  and A, are 
respectively the first, third and fourth terms in (4.7). The forms of J + ( o )  and cc+(w) show 
that the form of (4 .13~)  based on the precise result (3.8) for ?+(U) is considerably more 
complicated. In a recent report (Bullough et a1 1973) we quoted the results as 

- 1  2 2 E  
= -2~s(Pss-Poo)-h e xos 0). 

P(t)+ w;P(t)- (2n + l ) ~ ;  ,rOP;(t) - 20, A + A I  + A2 +-CO; TO 'CO:) P(t )  
227 

= -2~s(Ps , -Poo)~  - 1  e 2 xos 2 E  ( t )  (4.12 b) 

although a different notation was used there : we chose this form as typifying the situation 
although the fundamental status of the P(t )  rather than the P(t )  raises an interesting 
question not yet solved. In (2.28) in contrast P(r) appears directly. 

In weak enough fields described by small enough n and vanishing E ( t )  the solution of 
(4.126) which has a vanishing derivative as t = 0 is approximately 

p(t) = P(0) exp[ -82n + i)rot] cos at 
in which 

(4 .13~)  

(4.13b) 

(w, ck,  = m,c2h-'). This solution is a slowly-varying amplitude and phase solution 
of the type we make much use of later : it is applicable to order Tow,- and hence to order 
e2 if but only if n is small enough. Note again that although the isotropic field with the 
single parameter n is very artificial it is clear how to perform the more intricate but con- 
ceptually no different calculations for physically more realistic fields. 

The reaction field analogous to (2.29) must now break into two parts for positive and 
negative frequencies w respectively. We interpret the w in the numerator of (3.10) to 
act as though it has the magnitude w, (>O) but preserves the sign of w. In this case we 
see by inspection of (4.3) and (4.6) that one guess at the reaction fields to replace (2.29) is 
the positive and negative frequency part fields 

(4 .14~)  

where 

K ,  E - l n  - . 5 (2) (4.14b) 
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We show in a later paper to what extent this guess is confirmed by reaction field theory 
itself. The guess is imperfect because the total reaction field e(t) = e(+)(t)+e(-)(t) and 
proves still to be given by (2.29); but the significant parts of the fields are correctly 
described by (4.14). 

The general result of 4 3 raises a number of other questions. One is the relation of 
results like (4.12) for incoherent Fock state fields to the rather different results which have 
been obtained (eg by Lamb 1965) for single atoms coupled to strongly classical fields. 
This question is best answered by the reaction field theory and will be treated in a paper 
(Hassan and Bullough 1974) where the effect of the free field in reaction field theory 
is analysed in depth. 

5. Many atoms 

Now let us return to our system of N atoms situated at the points x i  (i = 1,2,. . . , N ) .  It 
becomes necessary to follow a hybrid decorrelation procedure in this case. This is 
because while we use the fermion commutation relations for two matter operators acting 
on the same atom, two matter operators acting on different atoms commute with one 
another as boson operators : 

[eri@), erj(t’)] = 0, i # j .  (5.1) 

We still decorrelate the field operators as before by replacing an anti-commutator by 
its expectation value. However, it also becomes necessary to decorrelate the matter 
operators. One way of doing this is as follows. As the commutator nests are being built 
up, at some stages there will appear terms containing the operator at). (The operators 
o:), a$), and o!) are the Pauli spin matrices as before but they act on the state vectors of 
the ith atom only.) If this term contains no other matter operators acting on the ith 
atom and no field operators referring to the site x i  then or) is replaced by its expectation 
value ( p s s  - p o o )  (assumed to be the same for all atoms). 

Using the notation eit)  = B .  e (x i ,  t )  for the field operators, (3.3)-(3.5) are replaced by 

(5.3) 
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Equation (3.6) becomes 

r 

After some manipulation this can be reduced to 

which is equivalent to 

1 P(x, O)  = y+(w)riri. 1 6 ( ~  - xi) F(x, X' ; w)P(x', U)  dx' 
i 

( 5 . 7 )  

where V -  v is all space except for a sphere of vanishingly small radius centred on x' = x. 
This excludes self-terms which of course are already contained in ?+(a). 

The main point of this result is that it shows within the decorrelation process that the 
intra-molecular photon propagator (carrying the reaction field) is F+(x, x' ; CO) defined by 
(3 , la) .  In contrast the intermolecular field is carried by F(x, x'; w) defined in (2.7). This 
result is supported by the equation of motion methods since F(x,x'; w) is the Green 
function of Maxwell's equations (viewed as operator equations or not). However, 
equation (5.7) is actually linearized and compared directly with (2.4): the only change is 
the replacement of y(w) by y+(o) so its solution is immediate. 

We follow the procedure of Bullough et a1 (1968) and Bullough (1968). We ensemble 
average over atomic sites xi. With 

/ N  \ 

i =  1 av 

we find the approximate integral equation for P(x, w) (now ensemble averaged) 

fix, U)  = y+(w)r?h. ( Eext(x, w)+no F(x, x ' ;  0). fix', w) dx' . (5.8) i 
We have again extracted a small sphere of volume v about the point x to ensure conver- 
gence of the integral. V is now the region occupied by atoms. The solution is 

P(x, w) = riP(w) 

if, but only if, k = mwc-' where m(w) satisfies the dispersion relation 

m2(w)- 1 = 4nn0y+(w)(l  -$nn0y+(w))-' .  (5.9) 

Since y+(w) is given by (3.8) we find 

(5.10) 

The level shift is now corrected by the Lorentz field terms which however depend on the 
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initial state occupation pss- poo in agreement with results obtained by Saunders and 
Bullough (1973) by second-order perturbation theory. 

The Lamb shift and its generalizations do not depend on the state occupation but the 
damping does. The refractive index m is complex and the sign of Im(m) is determined by 
that of the product - (pss - poo) Im J'(w). In the attenuator pss = 0 and poo = 1 so the 
wave eik.* damps exponentially. In the amplifier pss = 1 and poo = 0 and the wave 
grows exponentially : the damping constant (positive or negative) depends on the field 
described by the parameter n through J + ( o ) .  It is difficult to determine at this stage what 
real features of the amplifier are contained in this theory : it is a fermion theory in the 
self-interactions but is a pseudo-boson theory otherwise. Saunders and Bullough 
(1973) note what appear to be inadequacies in a pseudo-boson theory of the amplifier 
in taking account of all the damping processes. Significant non-linear features are cer- 
tainly missed in reaching the linear integral equation (5.8). A pseudo-boson theory of the 
amplifier without the y + ( o )  was sketched by Doniach (1963). 

6. Discussion 

The fermion decorrelation procedure we have described is a natural prQcedure alterna- 
tive to the decorrelated all-order perturbation theory used for a pseudo-boson theory. 
It appears to be the correct procedure for a quantal theory of self-interactions since it 
agrees with the results of second-order perturbation theory. It is therefore an order e' 
theory but is strong enough to yield the main result which is the equations of motion 
(4.12). These equations contrast sharply with the comparable equation (2.28) in the 
pseudo-boson theory, and this contrast already indicates the very different content of the 
neo-classical theory due to Jaynes and others and the second quantized theory. The 
reaction field theory to be developed in the papers to follow only emphasizes this point. 

It is perhaps worth pointing out that when first reported in 1971 the calculation was 
the first to obtain the total vacuum shift of the energy spacing in a natural way as A 
rather than *A. Weisskopf-Wigner theory, for example, produces *A as does the resolvant 
method described by Kroll(1965), for example. This is the shift of the upper state only, is 
due to making a rotating-wave approximation too early in the calculation (compare 
Bullough 1973, Ackerhalt et a1 1973, Agarwal 1973a) and then can be corrected for the 
Lamb shift of the ground state by rather arbitrary methods like that of Kroll(l965) who 
formally introduces the exact ground state energy. Ackerhalt et a1 (1973) also quote this 
particular result but their argument is unsound. 

The theory is also good enough to obtain the field-dependent shifts AI and A, in 
agreement with perturbation theory. These terms simply do not appear in the pseudo- 
boson theory. For this reason they appear as a consequence only of the self-interactions 
in the many atom theory of 0 5. The interatomic interactions are there carried by the 
propagator F and emerge from the Bose commutation relations which apply to inter- 
atomic processes. 

However, we have found difficulty in extending this particular method to systems of 
atoms with more than two levels. It seems very probable that the propagator F+ is the 
correct propagator for the calculation of self-interaction at order e' ; but we have so far 
made most progress on the problem of the many-level atom by applying operator reac- 
tion field theory to it. We have also found it easier, for example, to calculate the emitted 
spectrum corresponding to the result (4.12) by reaction field methods. 

We therefore develop the theory of this field in a following paper. 
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